Space Wave

When able to pass through the ionosphere, radio waves of 15 MHz and above (all the way up to many GHz), are considered space waves. Most navigation systems operate with signals propagating as space waves. Frequencies above 100 MHz have nearly no ground or sky wave components. They are space waves, but (except for global positioning system (GPS)) the navigation signal is used before it reaches the ionosphere so the effect of the ionosphere, which can cause some propagation errors, is minimal. GPS errors caused by passage through the ionosphere are significant and are corrected for by the GPS receiver system.

Space waves have another characteristic of concern to users. Space waves reflect off hard objects and may be blocked if the object is between the transmitter and the receiver. Site and terrain error, as well as propeller/rotor modulation error in very high omnidirectional range (VOR) systems, is caused by this bounce. Instrument landing system (ILS) course distortion is also the result of this phenomenon, which led to the need for establishment of ILS critical areas.

Generally, space waves are “line of sight” receivable, but those of lower frequencies “bend” somewhat over the horizon. The VOR signal at 108 to 118 MHz is a lower frequency than distance measuring equipment (DME) at 962 to 1213 MHz. Therefore, when an aircraft is flown “over the horizon” from a VOR/DME station, the DME is normally the first to stop functioning.

Scroll to Top